Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

نویسندگان

چکیده مقاله:

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definition and optimization of nonlinear systems. The proposed model involves structure identification and also a parameter tuning phase to be adapted for modeling of an arbitrary system. The proposed structure and the learning algorithm are validated by comparing with some other most commonly used alternatives. The simulation shows the performance and adaptability of the proposed model in approximating multivariate nonlinear mathematics functions.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wavelet Neural Network for Function Approximation and Network Optimization A WAVELET NEURAL NETWORK FOR FUNCTION APPROXIMATION AND NETWORK OPTIMIZATION

A new mapping network combined wavelet and neural networks is proposed. The algorithm consists of two process: the selfconstruction of networks and the minimization of errors. In the first process, the network structure is determined by using wavelet analysis. In the second process, the approximation errors are minimized. The merits of the proposed network are as follows: network optimization, ...

متن کامل

Wavelet Neural Network with Random Wavelet Function Parameters

The training algorithm of Wavelet Neural Networks (WNN) is a bottleneck which impacts on the accuracy of the final WNN model. Several methods have been proposed for training the WNNs. From the perspective of our research, most of these algorithms are iterative and need to adjust all the parameters of WNN. This paper proposes a one-step learning method which changes the weights between hidden la...

متن کامل

Evolutionary Wavelet Neural Network for large dimension function estimation

This paper describes a new method for constructing wavelet neural network in order to improve the accuracy of prediction for multi-dimensional function spaces. An algorithm is developed using the concept of evolutionary search in wavelet neural network. It helps in decreasing the computational effort needed for building the wavelet neural network. Several modifications to wavelet neural network...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Function Approximation Using Robust Wavelet Neural Networks

Wavelet neural networks (WNN) have recently attracted great interest, because of their advantages over radial basis function networks (RBFN) as they are universal approximators but achieve faster convergence and are capable of dealing with the so-called “curse of dimensionality.” In addition, WNN are generalized RBFN. However, the generalization performance of WNN trained by least-squares appro...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 28  شماره 10

صفحات  1423- 1429

تاریخ انتشار 2015-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023